
1

Software Design Document
DAI Trader

Adam Burich
Bright Hsu
Kayla Savage
Janice Tran

William Puppo
Sandalu Widyalankara

February 1st 2022
Version 1.0.0



2

SDD Revisions

Date Description Revision Editor

01/19/2022 Created Template 0 Kayla Savage

01/20/2022 Created Table of Contents 1 Kayla Savage

01/25/2022 Created SDD Revision 2 Kayla Savage

01/25/2022 Added Introduction 3 Kayla Savage

01/29/2022 Design Overview 4 Kayla Savage

01/29/2022 User Interface 5 Kayla Savage

01/30/2022 Docker 6 William Puppo

01/31/2022 Machine Learning Algorithm 7 Bright Hsu

02/01/22 Revised Table of Contents 8 Janice Tran

02/01/22 References 9 Janice Tran

02/01/22 Revised Definitions 10 Janice Tran

02/01/22 Data Preprocessing and Model 11 Kayla Savage

02/01/22 System Architecture Diagram 12 Sandalu Widyalankara



3

Table of Contents
1. Introduction 4

1.1 Purpose 4
1.2 Intended Audience 4
1.3 Project Scope 4
1.4 Definitions, Acronyms and Abbreviations 5

2. Design Overview 6
2.1 Technologies Used 6
2.2 System Architecture and Operation 7
2.3 Design and Implementation Constraints 7
2.4 User Documentation 7

3. User Interface 8
3.1 Use Case 8
3.2 GUI - Wireframes 8

3.2A1: 8
3.2A2: 9
3.2B1: 9
3.2B2: 10

4. Machine Learning Algorithm 11
4.2 Implementation 12

5. Data Preprocessing and Database Model 13
5.1 Data Preprocessing 13
5.2 Database Model 14

6. Amazon Web Services (AWS) 15

7. Docker 16
7.1 Concept 16
7.2 Implementation 16
7.3 Timeline 16

8. References 17



4

1. Introduction
DAITrader, an investment scenario simulation of the stock market, utilizes machine learning and
artificial intelligence in order to provide a stock experience to the user. Additionally, the
application produces possible predictions of company projections.

1.1 Purpose
The purpose of this document is to specify the software requirements for DAITrader. It is to
clarify and explain the requirements needed in order for the application to function for both
programmers and users.

DAITrader provides insight about stocks, particularly, the companies that own them, their trends,
and examinations of their projections. This application will feature a GUI, in which the user will
be able to interact with and see various simulations.

1.2 Intended Audience

The intended audience for this document are beginners, students, investors, developers, and
testers. The application is intended to be beginner friendly.

● User: Intended users can include beginners through intermediate investors and
learners.This document is needed as they need to review diagrams, dynamics, and
specifications in order to ensure the application is what the developer promised.
These types of users will have the same set of functions with different intentions.

● Developer: The developer is one who is tasked with reading, testing, and
modifying the application. In order to perform such actions, it is a necessity that
the requirements are understood through this document.

● Tester: The tester is one who is tasked with reading, understanding, and testing
the application. This document provides application specifics and functionality for
that purpose.

1.3 Project Scope

The application DAITrader offers users insight into the simulation of stocks. Furthermore, it
allows one to keep track of stock projections provided by the system.

The main purpose is to feature scenarios of stocks to the user in order to provide an experience of
various stock projections. This is done with a GUI, database, evaluation system and backend
API.



5

1.4 Definitions, Acronyms and Abbreviations

SRS: Software Requirements.

Schema: A schema is the organization or structure of a database. The activity of data modeling
leads to a schema. [1]

Specification Connects: Links this requirement with another

Includes: Has the appropriate constraint in it

Extends: Shows or cancels a constraint effect if the conditions are met.

ToS: Terms of Service agreement defining terms that customer must agree to before use of
application.

RSA: Encryption algorithm based on ‘the factoring problem’ that utilizes a public and private
key to maintain data obfuscation. [2]

User Stories: Presents a user description based on a potential use of a certain software
requirement within the application.

Domain Class Diagram: A diagram featuring the domain requirements for the trajectory of the
application procedures.

GUI: Graphical user interface.

API: Application programming interface.

OS: Operating System.

PAAS: Platform as a service.



6

2. Design Overview

DAITrader is an investment scenario simulation of the stock market. Using machine
learning/AI, DAITrader generates predictions of various companies' value. DAITrader will also
aim to offer users a finance related educational perspective; it is our hope that users will be able
to use DAITrader to learn more about the stock market.

2.1 Technologies Used
1. Pandas
2. Tensorflow/Keras
3. Numpy
4. MatplotLib
5. Docker
6. Github
7. Python
8. AWS
9. AlphaVantage for Historical Stock Trade Values and Daily Stock Value



7

2.2 System Architecture and Operation

Figure 1 depicts the high-level system architecture. The system will be constructed from
a combination of distinct components:

2.3 Design and Implementation Constraints

This application is created with the programming language python3 and uses various
python libraries for the modules needed for the GUI application, the API, evaluation system and
the database. Such libraries include Pandas, Numpy, Tensorflow/Keras, Matplotlib, and Docker.

2.4 User Documentation
Official Website: http://www.cci.drexel.edu/SeniorDesign/2021_2022/DAITRADER/index.html



8

3. User Interface

3.1 Use Case Diagram

3.2 GUI - Wireframes
3.2A1:



9

3.2A2:

3.2B1:



10

3.2B2:

3.2A1: Screen for generating a simulation in the past for selected stocks
3.2A2: Simulation generated as a result of user inputs from 3.2A1
3.2B1: Screen for generating a simulation for the future on selected stocks
3.2B2: Simulation generated as a result of inputs from 3.2B1



11

4. Machine Learning Algorithm
With a proof of concept finished and showing promising results, this section will discuss

the future of the machine learning algorithm.

4.1 Result and Revision

The modified linear regression model produced a decent Mean Absolute Percentage Error
or MAPE score of 10, however, there were noticeable outliers and output delay within the model
itself. Additionally, the grading metrics of the system techniques were not clear. Mean absolute
percentage error (MAPE) creates various accurate predictions that do not rely on time and since
stock prediction relies heavily on time based predictions this proposed an issue and having one
prediction be extremely off will invalidate any other prediction after that until the model
generates a new prediction.

Figure 4.1 shows the evaluation metrics of the model

Figure 4.2 depicts the mean average error of the model



12

The revision of the model plans to tackle this issue, more testing will be needed to try out
different methods. This testing will include running an updated dataset with modified
preprocessing and cleaning methodologies and custom model evaluation statistics.

4.2 Implementation
Model will be run after preprocessing script is finished, implementation of the model will

be done by having the prebuilt model be loaded and tasked to take inputs from the server side of
the infrastructure. This will take user inputs from the front end.



13

5. Data Preprocessing and Database Model

5.1 Data Preprocessing

Combineddata_csv
As described in our resources section, after data is pulled from AlphaVantage API, the

data is run through a series of preprocessing steps. This includes, the removal of null and
duplicated data values, sorting and the combining of all 500 companies. Combineddata_csv is
the collection of all these values into a comma-separated value sheet. These file types are easy to
both analyze and visualize.

Attributes

Name Type Description

timestamp Vector <datetime> Contains a vector of datetime values that depicts the time
at which stock price closed

open Vector <float> Contains a vector of float values that indicates the price
where trading begins

high Vector <float> Contains a vector of float values that shows the highest
price at which a stock traded during the course of the
trading day

low Vector <float> Contains a vector of float values that shows the lowest
price at which a stock traded during the course of the
trading day

close Vector <float> Contains a vector of float values that indicates the price
where trading ends

volume Vector <integer> Contains a vector of integers values that represents the
number of shares traded of a particular stock, index, or
other investment over a specific period of time

stock_name Vector<String> Contains a vector of strings indicating the ticker names of
collected stocks



14

5.2 Database Model
Using PostgreSQL database version 13.3, the database serves a significant function to our

project. By controlling, loading and saving the visualization and user information. The database
model holds the in-memory data while its contents after running the system is stored on AWS.

Figure 4 shows the database schema with all appropriate entity relationships.



15

6. Amazon Web Services (AWS)
We will use an EC2 AWS server to implement our system. Thus far we’ve set up a server

with NGINX for our API, Docker, Docker-Compose, and acquired a domain name to point API
requests to. This EC2 server will run the script that utilizes the AlphaVantageAPI to download
and host stock data. The data will then be processed and handed to the model to generate a
prediction. That prediction will be sent back to the client.



16

7. Docker

7.1 Concept

This application will be containerized using Docker PAAS in order to distribute the app
to any device running Docker PAAS. This removes the need to develop for specific hardware or
software and allows flexibility of distribution.

7.2 Implementation
Only the endpoint application will be containerized with no local data persistence. This

will be done by writing a dockerfile in order to compile the docker image of the application.
The dockerfile will be distributed through the project's web portal after a user has been

registered to the user's device at which time they will access the application by running the
dockerfile.

7.3 Timeline

02/06/22 - 02/12/22 : Create Dockerfile template.
02/13/22 - 02/19/22 : Create Dockerfile for application at current state.
02/20/22 - 02/26/22 : Test Dockerfile and image on various endpoints running Docker

PAAS.
02/27/22 - 03/12/22 : Refine and deploy.



17

8. References

[1] Directorate, OECD Statistics. OECD Glossary of Statistical Terms - Schema
Definition,https://stats.oecd.org/glossary/detail.asp?ID=6262#:~:text=In%20computer%20progra
mming%2C%20a%20schema,a%20formal%20text%2Doriented%20description.

[2] “What Is the RSA Algorithm?” Educative,
https://www.educative.io/edpresso/what-is-the-rsa-algorithm.


